Skip to main content

Logging - Custom Callbacks, OpenTelemetry, Langfuse

Log Proxy Input, Output, Exceptions using Custom Callbacks, Langfuse, OpenTelemetry

Custom Callbacks​

Use this when you want to run custom callbacks in python

Step 1 - Create your custom litellm callback class​

We use litellm.integrations.custom_logger for this, more details about litellm custom callbacks here

Define your custom callback class in a python file.

Here's an example custom logger for tracking key, user, model, prompt, response, tokens, cost. We create a file called custom_callbacks.py and initialize proxy_handler_instance

from litellm.integrations.custom_logger import CustomLogger
import litellm

# This file includes the custom callbacks for LiteLLM Proxy
# Once defined, these can be passed in proxy_config.yaml
class MyCustomHandler(CustomLogger):
def log_pre_api_call(self, model, messages, kwargs):
print(f"Pre-API Call")

def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
print(f"Post-API Call")

def log_stream_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Stream")

def log_success_event(self, kwargs, response_obj, start_time, end_time):
# Logging key details: key, user, model, prompt, response, tokens, cost
print("\nOn Success")
# Access kwargs passed to litellm.completion()
model = kwargs.get("model", None)
messages = kwargs.get("messages", None)
user = kwargs.get("user", None)

# Access litellm_params passed to litellm.completion(), example access `metadata`
litellm_params = kwargs.get("litellm_params", {})
metadata = litellm_params.get("metadata", {}) # Headers passed to LiteLLM proxy

# Calculate cost using litellm.completion_cost()
cost = litellm.completion_cost(completion_response=response_obj)
usage = response_obj["usage"] # Tokens used in response

print(
f"""
Model: {model},
Messages: {messages},
User: {user},
Usage: {usage},
Cost: {cost},
Response: {response}
Proxy Metadata: {metadata}
"""
)
return

def log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Failure")

proxy_handler_instance = MyCustomHandler()

# Set litellm.callbacks = [proxy_handler_instance] on the proxy
# need to set litellm.callbacks = [proxy_handler_instance] # on the proxy

Step 2 - Pass your custom callback class in config.yaml​

We pass the custom callback class defined in Step1 to the config.yaml. Set callbacks to python_filename.logger_instance_name

In the config below, we pass

  • python_filename: custom_callbacks.py
  • logger_instance_name: proxy_handler_instance. This is defined in Step 1

callbacks: custom_callbacks.proxy_handler_instance

model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo

litellm_settings:
callbacks: custom_callbacks.proxy_handler_instance # sets litellm.callbacks = [proxy_handler_instance]

Step 3 - Start proxy + test request​

litellm --config proxy_config.yaml
curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "good morning good sir"
}
],
"user": "ishaan-app",
"temperature": 0.2
}'

Resulting Log on Proxy​

On Success
Model: gpt-3.5-turbo,
Messages: [{'role': 'user', 'content': 'good morning good sir'}],
User: ishaan-app,
Usage: {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21},
Cost: 3.65e-05,
Response: {'id': 'chatcmpl-8S8avKJ1aVBg941y5xzGMSKrYCMvN', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Good morning! How can I assist you today?', 'role': 'assistant'}}], 'created': 1701716913, 'model': 'gpt-3.5-turbo-0613', 'object': 'chat.completion', 'system_fingerprint': None, 'usage': {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21}}
Proxy Metadata: {'user_api_key': None, 'headers': Headers({'host': '0.0.0.0:8000', 'user-agent': 'curl/7.88.1', 'accept': '*/*', 'authorization': 'Bearer sk-1234', 'content-length': '199', 'content-type': 'application/x-www-form-urlencoded'}), 'model_group': 'gpt-3.5-turbo', 'deployment': 'gpt-3.5-turbo-ModelID-gpt-3.5-turbo'}

OpenTelemetry, ElasticSearch​

Step 1 Start OpenTelemetry Collecter Docker Container​

This container sends logs to your selected destination

Install OpenTelemetry Collecter Docker Image​

docker pull otel/opentelemetry-collector:0.90.0
docker run -p 127.0.0.1:4317:4317 -p 127.0.0.1:55679:55679 otel/opentelemetry-collector:0.90.0

Set Destination paths on OpenTelemetry Collecter​

Here's the OpenTelemetry yaml config to use with Elastic Search

receivers:
otlp:
protocols:
grpc:
endpoint: 0.0.0.0:4317

processors:
batch:
timeout: 1s
send_batch_size: 1024

exporters:
logging:
loglevel: debug
otlphttp/elastic:
endpoint: "<your elastic endpoint>"
headers:
Authorization: "Bearer <elastic api key>"

service:
pipelines:
metrics:
receivers: [otlp]
exporters: [logging, otlphttp/elastic]
traces:
receivers: [otlp]
exporters: [logging, otlphttp/elastic]
logs:
receivers: [otlp]
exporters: [logging,otlphttp/elastic]

Start the OpenTelemetry container with config​

Run the following command to start your docker container. We pass otel_config.yaml from the previous step

docker run -p 4317:4317 \
-v $(pwd)/otel_config.yaml:/etc/otel-collector-config.yaml \
otel/opentelemetry-collector:latest \
--config=/etc/otel-collector-config.yaml

Step 2 Configure LiteLLM proxy to log on OpenTelemetry​

Pip install opentelemetry​

pip install opentelemetry-api opentelemetry-sdk opentelemetry-exporter-otlp -U

Set (OpenTelemetry) otel=True on the proxy config.yaml​

Example config.yaml

model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-eu
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
api_key:
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)

general_settings:
otel: True # set OpenTelemetry=True, on litellm Proxy

Set OTEL collector endpoint​

LiteLLM will read the OTEL_ENDPOINT environment variable to send data to your OTEL collector

os.environ['OTEL_ENDPOINT'] # defauls to 127.0.0.1:4317 if not provided

Start LiteLLM Proxy​

litellm -config config.yaml

Run a test request to Proxy​

curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Authorization: Bearer sk-1244' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "request from LiteLLM testing"
}
]
}'

Test & View Logs on OpenTelemetry Collecter​

On successfull logging you should be able to see this log on your OpenTelemetry Collecter Docker Container

Events:
SpanEvent #0
-> Name: LiteLLM: Request Input
-> Timestamp: 2023-12-02 05:05:53.71063 +0000 UTC
-> DroppedAttributesCount: 0
-> Attributes::
-> type: Str(http)
-> asgi: Str({'version': '3.0', 'spec_version': '2.3'})
-> http_version: Str(1.1)
-> server: Str(('127.0.0.1', 8000))
-> client: Str(('127.0.0.1', 62796))
-> scheme: Str(http)
-> method: Str(POST)
-> root_path: Str()
-> path: Str(/chat/completions)
-> raw_path: Str(b'/chat/completions')
-> query_string: Str(b'')
-> headers: Str([(b'host', b'0.0.0.0:8000'), (b'user-agent', b'curl/7.88.1'), (b'accept', b'*/*'), (b'authorization', b'Bearer sk-1244'), (b'content-length', b'147'), (b'content-type', b'application/x-www-form-urlencoded')])
-> state: Str({})
-> app: Str(<fastapi.applications.FastAPI object at 0x1253dd960>)
-> fastapi_astack: Str(<contextlib.AsyncExitStack object at 0x127c8b7c0>)
-> router: Str(<fastapi.routing.APIRouter object at 0x1253dda50>)
-> endpoint: Str(<function chat_completion at 0x1254383a0>)
-> path_params: Str({})
-> route: Str(APIRoute(path='/chat/completions', name='chat_completion', methods=['POST']))
SpanEvent #1
-> Name: LiteLLM: Request Headers
-> Timestamp: 2023-12-02 05:05:53.710652 +0000 UTC
-> DroppedAttributesCount: 0
-> Attributes::
-> host: Str(0.0.0.0:8000)
-> user-agent: Str(curl/7.88.1)
-> accept: Str(*/*)
-> authorization: Str(Bearer sk-1244)
-> content-length: Str(147)
-> content-type: Str(application/x-www-form-urlencoded)
SpanEvent #2

Here's the log view on Elastic Search. You can see the request input, output and headers

Logging Proxy Input/Output - Langfuse​

We will use the --config to set litellm.success_callback = ["langfuse"] this will log all successfull LLM calls to langfuse

Step 1 Install langfuse

pip install langfuse

Step 2: Create a config.yaml file and set litellm_settings: success_callback

model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
litellm_settings:
success_callback: ["langfuse"]

Step 3: Start the proxy, make a test request

Start proxy

litellm --config config.yaml --debug

Test Request

litellm --test

Expected output on Langfuse